Abstract-1
Most theories of motor cortex have assumed that neural activity represents movement parameters. This view derives from what is known about primary visual cortex, where neural activity represents patterns of light. Yet it is unclear how well the analogy between motor and visual cortex holds. Single-neuron responses in motor cortex are complex, and there is marked disagreement regarding which movement parameters are represented. A better analogy might be with other motor systems, where a common principle is rhythmic neural activity. Here we find that motor cortex responses during reaching contain a brief but strong oscillatory component, something quite unexpected for a non-periodic behaviour. Oscillation amplitude and phase followed naturally from the preparatory state, suggesting a mechanistic role for preparatory neural activity. These results demonstrate an unexpected yet surprisingly simple structure in the population response. This underlying structure explains many of the confusing features of individual neural responses.
Mark M.Churchland, John P.Cunningham, Matthew T.Kaufman, Justin D.Foster, Paul Nuyujukian, Stephen I.Ryu & Krishna V. Shenoy. Neural population dynamics during reaching. Nature, 2012-6. [LINK]
Abstract-2
During reaching, neurons in motor cortex exhibit complex, time-varying activity patterns. Though single-neuron activity correlates with movement parameters, movement correlations explain neural activity only partially. Neural responses also reflect population-level dynamics thought to generate outputs. These dynamics have previously been described as “rotational,” such that activity orbits in neural state space. Here, we reanalyze reaching datasets from male Rhesus macaques and find two essential features that cannot be accounted for with standard dynamics models. First, the planes in which rotations occur differ for different reaches. Second, this variation in planes reflects the overall location of activity in neural state space. Our “location-dependent rotations” model fits nearly all motor cortex activity during reaching, and high-quality decoding of reach kinematics reveals a quasilinear relationship with spiking. Varying rotational planes allows motor cortex to produce richer outputs than possible under previous models. Finally, our model links representational and dynamical ideas: representation is present in the state space location, which dynamics then convert into time-varying command signals.
David A. Sabatini & Matthew T. Kaufman. Reach-dependent reorientation of rotational dynamics in motor cortex. Nature Communications, 2024-8. [LINK]
Abstract-3
Although the generation of movements is a fundamental function of the nervous system, the underlying neural principles remain unclear. As flexor and extensor muscle activities alternate during rhythmic movements such as walking, it is often assumed that the responsible neural circuitry is similarly exhibiting alternating activity1. Here we present ensemble recordings of neurons in the lumbar spinal cord that indicate that, rather than alternating, the population is performing a low-dimensional ‘rotation’ in neural space, in which the neural activity is cycling through all phases continuously during the rhythmic behaviour. The radius of rotation correlates with the intended muscle force, and a perturbation of the low-dimensional trajectory can modify the motor behaviour. As existing models of spinal motor control do not offer an adequate explanation of rotation1,2, we propose a theory of neural generation of movements from which this and other unresolved issues, such as speed regulation, force control and multifunctionalism, are readily explained.
Henrik Lindén, Peter C. Petersen, Mikkel Vestergaard & Rune W. Berg. Movement is governed by rotational neural dynamics in spinal motor networks. Nature, 2022-10. [LINK]
Speaker: Yuhang Zhu
Time: 9:00 am, 2024/11/18
Location: CIBR A622