Abstract-1
Pain and itch are two closely related but essentially distinct sensations that elicit different behavioral responses. However, it remains mysterious how pain and itch information is encoded in the brain to produce differential perceptions. Here, we report that nociceptive and pruriceptive signals are separately represented and processed by distinct neural ensembles in the prelimbic (PL) subdivision of the medial prefrontal cortex (mPFC) in mice. Pain- and itch-responsive cortical neural ensembles were found to significantly differ in electrophysiological properties, input-output connectivity profiles, and activity patterns to nociceptive or pruriceptive stimuli. Moreover, these two groups of cortical neural ensembles oppositely modulate pain- or itch-related sensory and emotional behaviors through their preferential projections to specific downstream regions such as the mediodorsal thalamus (MD) and basolateral amygdala (BLA). These findings uncover separate representations of pain and itch by distinct prefrontal neural ensembles and provide a new framework for understanding somatosensory information processing in the brain.
Pan, Q., Guo, S. S., Chen, M., Su, X. Y., Gao, Z. L., Wang, Q., ... & Hu, J. (2023). Representation and control of pain and itch by distinct prefrontal neural ensembles. Neuron. [LINK]
Abstract-2
Persistent pain is a prevalent medical concern correlating with a hyperexcitable anterior cingulate cortex (ACC). Its activity is modulated by inputs from several brain regions, but the maladjustments that these afferent circuits undergo during the transition from acute to chronic pain still require clarification. We focus on ACC-projecting claustrum (CLAACC) neurons and their responses to sensory and aversive stimuli in a mouse model of inflammatory pain. Using chemogenetics, in vivo calcium imaging, and ex vivo electrophysiological approaches, we reveal that suppression of CLAACC activity acutely attenuates allodynia and that the claustrum preferentially transmits aversive information to the ACC. With prolonged pain, a claustro-cingulate functional impairment develops, which is mediated by a weakened excitatory drive onto ACC pyramidal neurons, resulting in a diminished claustral influence on the ACC. These findings support an instrumental role of the claustrum in the processing of nociceptive information and its susceptibility to persistent pain states.
Ntamati, N. R., Acuña, M. A., & Nevian, T. (2023). Pain-induced adaptations in the claustro-cingulate pathway. Cell Rep, 42(5). [LINK]
Speaker: Qiyue Zhang
Time: 9:00 am, 2023/07/03
Location: CIBR A528