Abstract
Animals use feedback to rapidly correct ongoing movements in the presence of a perturbation. Repeated exposure to a predictable perturbation leads to behavioural adaptation that compensates for its effects. Here, we tested the hypothesis that all the processes necessary for motor adaptation may emerge as properties of a controller that adaptively updates its policy. We trained a recurrent neural network to control its own output through an error-based feedback signal, which allowed it to rapidly counteract external perturbations. Implementing a biologically plausible plasticity rule based on this same feedback signal enabled the network to learn to compensate for persistent perturbations through a trial-by-trial process. The network activity changes during learning matched those from populations of neurons from monkey primary motor cortex — known to mediate both movement correction and motor adaptation — during the same task. Furthermore, our model natively reproduced several key aspects of behavioural studies in humans and monkeys. Thus, key features of trial-by-trial motor adaptation can arise from the internal properties of a recurrent neural circuit that adaptively controls its output based on ongoing feedback.
Barbara Feulner, Matthew G. Perich, Lee E. Miller, Claudia Clopath & Juan A. Gallego. A neural implementation model of feedback-based motor learning. Nature Communications, 2025-02. [LINK]
Speaker: Yuhang Zhu
Time: 9:00 am, 2025/06/09
Location: CIBR A622